Re-Classification of Drosophila melanogaster Trichoid and Intermediate Sensilla Using Fluorescence-Guided Single Sensillum Recording

نویسندگان

  • Chun-Chieh Lin
  • Christopher J. Potter
  • Matthieu Louis
چکیده

Drosophila olfactory receptor neurons are found within specialized sensory hairs on antenna and maxillary palps. The linking of odorant-induced responses to olfactory neuron activities is often accomplished via Single Sensillum Recordings (SSR), in which an electrode inserted into a single sensory hair records the neuronal activities of all the neurons housed in that sensillum. The identification of the recorded sensillum requires matching the neuronal responses with known odor-response profiles. To record from specific sensilla, or to systematically screen all sensillar types, requires repetitive and semi-random SSR experiments. Here, we validate an approach in which the GAL4/UAS binary expression system is used for targeting specific sensilla for recordings. We take advantage of available OrX-Gal4 lines, in combination with recently generated strong membrane targeted GFP reporters, to guide electrophysiological recordings to GFP-labeled sensilla. We validate a full set of reagents that can be used to rapidly screen the odor-response profiles of all basiconic, intermediate, and trichoid sensilla. Fluorescence-guided SSR further revealed that two antennal trichoid sensilla types should be re-classified as intermediate sensilla. This approach provides a simple and practical addition to a proven method for investigating olfactory neurons, and can be extended by the addition of UAS-geneX effectors for gain-of-function or loss-of-function studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Blunt Trichoid Sensillum of Female Mosquitoes, Anopheles gambiae: Odorant Binding Protein and Receptor Types

In order to find a blood host and to select appropriate oviposition sites female Anopheles gambiae mosquitoes rely on olfactory cues which are sensed by olfactory sensory neurons (OSNs) located within morphologically different sensilla hairs. While the sharp type trichoid sensilla are most abundant and intensely studied, the striking blunt type trichoid sensilla exist only in small numbers and ...

متن کامل

Single Sensillum Recordings in the Insects Drosophila melanogaster and Anopheles gambiae

The sense of smell is essential for insects to find foods, mates, predators, and oviposition sites. Insect olfactory sensory neurons (OSNs) are enclosed in sensory hairs called sensilla, which cover the surface of olfactory organs. The surface of each sensillum is covered with tiny pores, through which odorants pass and dissolve in a fluid called sensillum lymph, which bathes the sensory dendri...

متن کامل

Characterization of olfactory sensilla of Stomoxys calcitrans and electrophysiological responses to odorant compounds associated with hosts and oviposition media.

Stable flies, Stomoxys calcitrans L. (Diptera: Muscidae), are economically important biting flies that have caused billions of dollars in losses in the livestock industry. Field monitoring studies have indicated that olfaction plays an important role in host location. To further our understanding of stable fly olfaction, we examined the antennal morphology of adults using scanning electron micr...

متن کامل

Odorant Responses and Courtship Behaviors Influenced by at4 Neurons in Drosophila

In insects, pheromones function as triggers to elicit complex behavior programs, such as courtship and mating behavior. In most species, the neurons tuned to pheromones are localized in a specific subset of olfactory sensilla located on the antenna called trichoid sensilla. In Drosophila there are two classes of trichoid sensilla, at1 sensilla that contain the dendrites of a single neuron that ...

متن کامل

Incomplete electrical isolation of sex-pheromone responsive olfactory receptor neurons from neighboring sensilla.

In the long trichoid sensilla on male Helicoverpa zea antennae, approximately 40% of the sensilla having a large-spiking olfactory receptor neuron responding to the major pheromone component, (Z)-11-hexadecenal, also exhibit small-spiking action potentials that also seem to be responsive to this same compound. In this study, we investigated whether these small-spiking signals are a result of in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015